LIFE CYCLE ASSESSMENT FOR RAPIDLY EVOLVING TECHNOLOGIES

A CASE STUDY ON GLOBAL INTEGRATED CIRCUIT MANUFACTURING

Dr. Rylie Pelton, Dr. Tim Smith, Dr. Yi Yang, Jess Blascak, Joe Pelton

LCA DATA LIMITATIONS

geographies, processing tech

• Difficult to compare across LCAs:

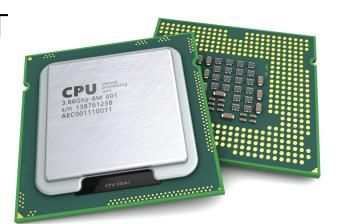
minimal transparency and variable

• Unaccounted nonlinearities

• Uncertainties in mitigation

system boundaries and

• Data limited to specific


opportunities

assumptions

OVERVIEW 1,2,3

- Information & Communication Technology (ICT) contributes 2-4% of global greenhouse gas emissions.
- Scope 3 upstream emissions can contribute 30-90% of total ICT emissions, depending on the product category.
- Integrated circuits are key contributors to upstream scope 3 emissions of data centers and computing systems.
- Companies are committing to reducing ICT emissions from upstream scope 3 but limited LCA data exists.

LCA DATA CHALLENGES

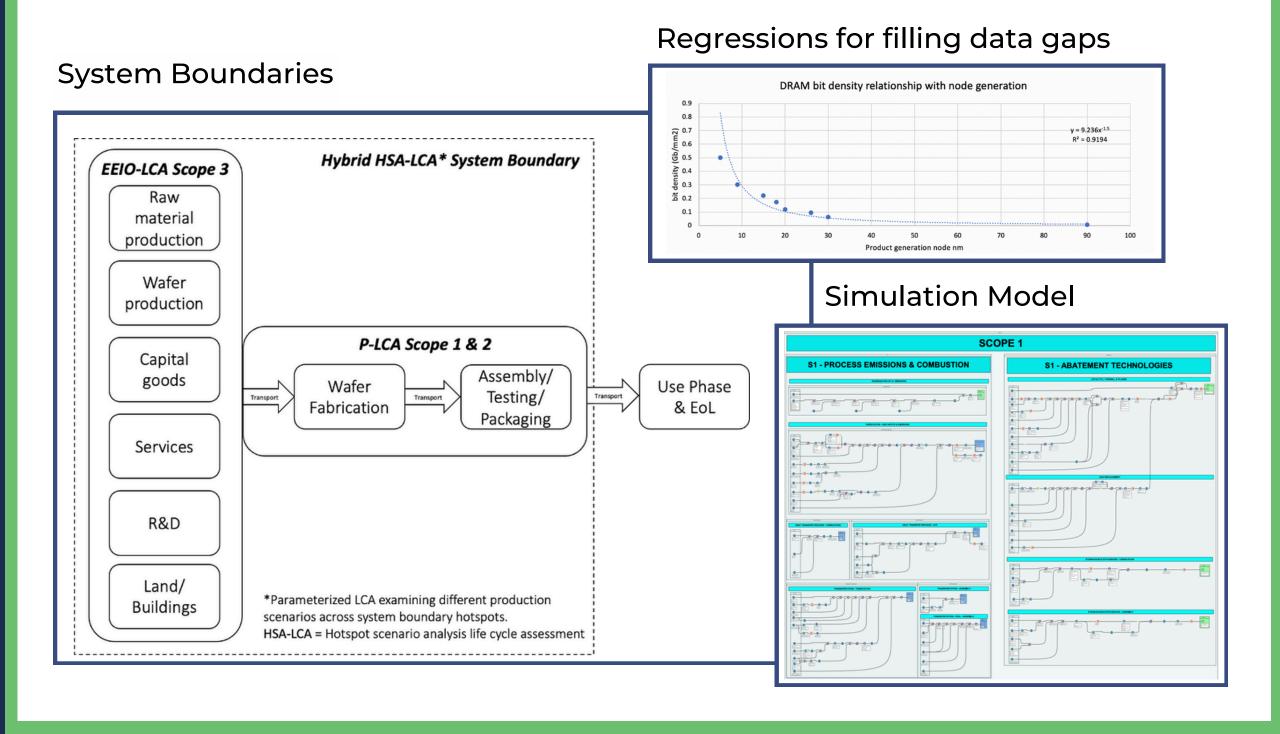
- Rapidly evolving products with wide variation in product category complexity
- Highly proprietary processing & ingredient information
- Literature data from early 2000's
- Databases assume linear scaling properties but ignore nonlinear changes in processing technologi and complexity

Poses signficant challenges for accurate product LCA, scope 3 measurement and mitigation

GOAL & SCOPE

Develop a parameterized, streamlined LCA to explore potential variation in semiconductor cradle-to-processing gate emissions across product types, product generations, regional production contexts, product technologies and design to identify potential levers for mitigating GHG emissions.

METHODS⁶


Identify hotspots through initial scoping analysis Fabrication | Assembly, Testing, Packaging (ATP)

2) Develop parameterized LCI within hotspot stages Govt Reports | Public Data | Regression Analysis of Gaps

3) Use general LCA information for non-hotspots EEIO | Existing PLCA's Reflecting Industry Averages

4) Identify key parameter levers affecting hotspot impacts Literature | Iterative Model Building | Sensitivity Analysis

5) Simulate discreet scenario permutations & estimate mitigation potential Capture dynamics across combinations of scenarios

DESIGN SCENARIO PARAMETERS

Simulation Model Scenario Parameters

- Fab size: [150-200mm, 300+mm]
- Country of production: [China, South Korea, Taiwan, US]
- Product type: [DRAM, SSD, CPU, GPU]
- Technology type: [In situ thermal clean, In situ
- plasma clean, Remote plasma clean]
- Gas replacement: [F2, C3F8, C4F8O, C4F8]
- Electricity management: [Renewables, Efficiency, grid decarbonization]
- Generation node: [90nm, 60nm, 40nm, 28nm,
- 20nm, 16nm, 10nm, 7nm, 5nm] • Fabrication design details: [Deck stacking:
- single, 2D, 3D, 4D]
- Assembly design details: [Die stacking], [chips per package], [die size], [bit or transistor density], [defect density]
- Abatement technology/adoption: [combustion, hot-wet (electrical), plasma catalytic]

Product types

Technology types

Grid mix & projections

Country of production

Wafer size (200 vs. 300mm)

Renewable Energy

300mm Wafer Sizes

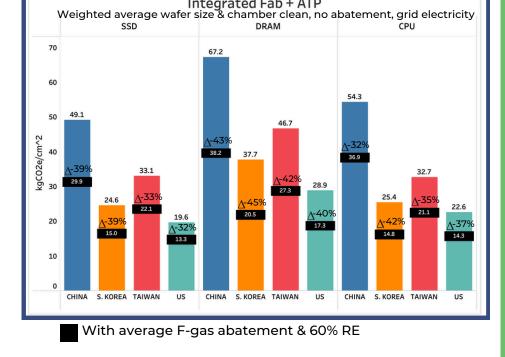
SBTi Upstream Targets

Remote Plasma Clean

F-Gas Abatement

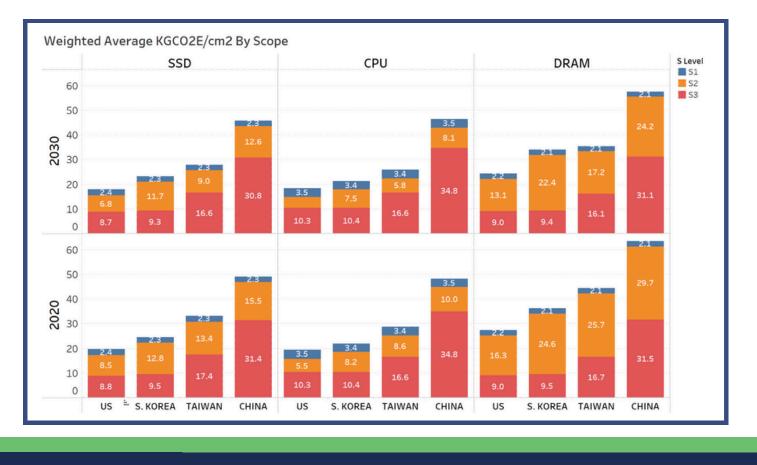
LEVERAGE POINTS

Baseline default design assumptions


Parameters	SSD	DRAM	CPU
Node Generation	20nm	20nm	20nm
Capacity per Package	633 Gb	6 Gb	5,776 MTr
Deck Stacking	3D	2D	2D
Wafer Mask Layers	97	101	124
Size of die	118 mm2	53 mm2	312 mm2
Die per Wafer (200mm)	225	530	76
Die per Wafer (300mm)	537	1238	189
Bit or Transistor Density	5.4 Gb/mm2	0.1 Gb/mm2	19 MTr/mm2
Die stacking	1	1	1
Chips per Package	1	1	1
Defect Density (#/cm2/die)	0.1	0.1	0.1
Yield	89%	95%	74%

EMISSIONS INTENSITY

GHG Emissions & Mitigation Opportunities vary by product category & country


REDUCTION POTENTIAL

- o SSD 32-39%
- DRAM 40-45%
- o CPU 32-42%

Scope 2 emissions are biggest single hotspot

Scope 3 emissions vary by country and are a significant proportion of total emissions in aggregate

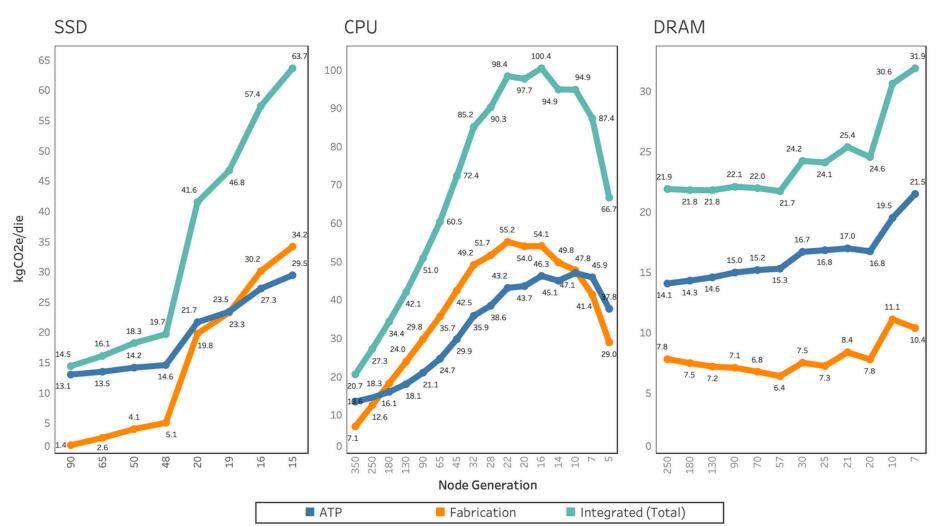
GHG MITIGATION OPPORTUNITIES

EXAMPLE RANGE OF SIMULATED

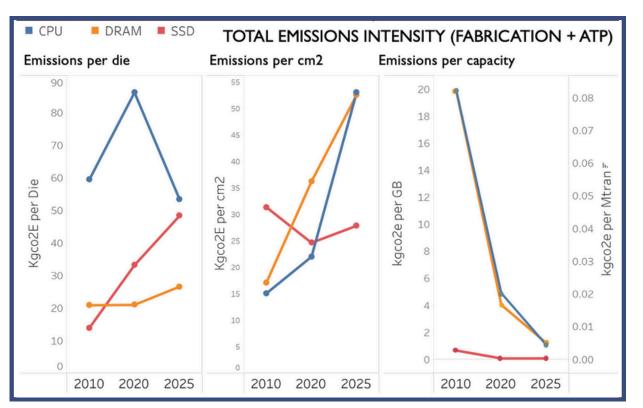
PRODUCTION POSSIBILITIES

2020 grid vs. 2030 grid decarb

0-100% Renewable energy adoptions


~16-20nm (default design parameters)

0-100% F-gas abatement across tech types


SIMULATION DYNAMICS

Relative contribution from ATP vs. Fabrication production stages depends on product type and tech generation, having implications for supply chain engagement targets for how far to reach up the supply chain to effectively reduce emissions.

GHG Contributions Change across Tech Gens

GHG Trends Change across functional units

Emissions Intensity trends depend on the chosen functional unit, with implications for target setting:

- Generally increasing GHG per die & per cm^2 in newer generations
- Decreasing GHG per storage or processing capacity for newer product generations

Simulation Considerations:

- Product types
 - Node generations
- Electricity Wafer mask layers
- Die size (mm2)

BENEFITS OF PARAMETERIZED LCA

- Increase comparability across production & sourcing scenarios, avoiding inconsistent system boundaries, allocations, functional units, & other differences in assumptions.
- Enables prospective modeling for examining alternative production scenarios & mitigation options with enhanced comparability for directionally consistent decision signals.
- Reduces costs of analysis through parameterization & prioritizing high impact components of supply chain, which maintains comprehensiveness of the broader system.
- Increases timeliness & actionability of information for setting climate action plans & achieving targets.

REFERENCES

- 1. Frietag et al 2021. The real climate and transformative impact of ICT: A critique of estimates, trends and regulations. *Patterns 2(9): 100340* 2. Kline 2019. Achieving reliable and sustainable next-generation
- memories. University of Pittsburgh, Dissertation. 3. Teehan and Kandlikar 2013. Comparing embodied greenhouse gas emissions of modern computing and electronics products. ES&T 47:3997-4003
- 4. Schmidt et al 2012. Life cycle assessment of silicon wafer processing for microelectronic chips and solar cells. IJLCA 17: 126-144
- 5. Boyd 2012. Life-cycle assessment of semiconductors. 6. Pelton and Smith 2015. Hotspot Scenario Analysis: Comparative streamlined LCA approaches for Green Supply Chain and
- Procurement Decision Making. JIE 19(3): 427-440.